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A correspondence between dynamical groups of Schroedinger equations and dynamical groups of Hamilton’s
equations enables one to intrepret both quantal and classical dynamical symmetries as Lie symmetries of
total energy surfaces in a phase space. Suitable choices of Cartesian coordinates in the phase space may
often be used to express these energy surfaces, whose symmetries are seldom obvious, as group-invariant
manifolds with evident geometric symmetries. These invariant manifolds retain their form when a Hamiltonian
is subjected to a wide variety of perturbations and may sometimes be constructed without knowing the
transformation between their Cartesian coordinates and laboratory coordinates.

1. Introduction

This paper develops a geometric interpretation of groups
whose transformations convert solutions of Schroedinger equa-
tions into solutions and depend on the independent variables in
the equations.1 The classical analogues of these transformations
can be shown to convert solutions of Hamilton’s equations into
solutions. We shall refer to groups of such transformations as
dynamical groups. The transformations of a dynamical group
of Hamilton’s equations are also invariance transformations of
total energy surfaces. Solutions of the equations of motion are
represented by trajectories on these surfaces, and operations of
a dynamical group interconvert these trajectories. The energy
surfaces, or Hamiltonian manifolds, are commonly defined by
the expressionH(q,p) - E ) 0, but it is the geometric object
and its symmetries, rather than its analytical expression, which
will be of central interest. Here and throughout the discussion,
q ) (q1, q2, ...) denotes position variables andp ) (p1, p2, ...)
denotes their conjugate momentum variables;E denotes the
energy, andt will be used to denote time. As dynamical groups
carry solution trajectories into solution trajectories, they are at
least subgroups of the invariance group of energy surfaces.

Most of the operations of dynamical groups are operations
of Lie groups. As explained below, the major symmetries of
total energy surfacesstheir Lie symmetriessare often much
larger than one might expect. This property is inherited by the
dynamical groups of Schroedinger equations, which commonly
express symmetries of Hamiltonian manifolds that are far from
obvious.

The recent monograph by Iachello and Levine2 and the many
references it contains amply demonstrate the utility of dynamical
groups and their Lie algebras in the analysis and prediction of
rovibrational spectra; a host of recently uncovered relationships
and simplifications are brought to the fore. The recognition
that electronic motion in hydrogen-like atoms possesses the
dynamical symmetry of a hypersphere dates back to the 1935
work of Fock and Bargmann.3 Dynamical symmetries of
electronic motions are apparently responsible for the general
form of the periodic chart.4a They are responsible for surprising
relationships in the energy spectra of one-electron diatomics4b

and in the spectra of the doubly excited states of helum-like

atoms.4c-f Quantum chemistry computer programs that exploit
dynamical symmetries are currently undergoing rapid develop-
ment.5

Two particularly useful types of dynamical group may be
distinguished. Quantum mechanical degeneracy groups are
dynamical groups that convert solutions of Schroedinger’s time-
independent equation into solutions of the same energy. Energy
eigenstates may be labeled by their transformation properties
under the action of these groups, and it is the symmetries defined
by these dynamical groups that are relevant to the noncrossing
rule.6 Slightly breaking these symmetries can yield nearly
degenerate states and lead to avoided crossings. The symmetries
need not be symmetries in position space: many chemicaly
significant examples are provided by the breaking of Hartree-
Fock degeneracies and the breaking of degeneracies that occur
in naive LCAO MO and other one-electron appproximationss
degeneracies that are not due to ordinary molecular symmetry.

Quantum mechanical spectrum-generating groups have gen-
erators that convert eigenstates of one energy into eigenstates
of another energy.7 Their time-dependent versions generate
dynamical groups that convert solutions of Schroedinger’s time-
dependent equation into solutions.8

It turns out that degeneracy groups are associated with Lie
symmetries in classical PQ space, the phase space of positions,
and momenta. They need not be Lie symmetries in momentum
space or position space separately: the group operations may
interconvert positions and momenta. Degeneracy groups may
be different for different ranges ofE values. Spectrum-
generating groups and other invariance groups of time-dependent
Schroedinger equations are associated with Lie symmetries in
classical PQET phase space. (Becauset is canonically conjugate
to -E, it can become necessary to enlarge PQE space to include
t if one wishes to transformE.)

Symmetries as commonly understood in chemistry, solid-state
physics, and the sciences in general are special cases of Lie
symmetries. Lie’s more general concept arose from a consid-
eration of invariance transformations of equations. If an
equation is left unchanged by a transformation of its variables
and by the inverse of this transformation, then it possesses an
invariance group defined by these transformations and the
identity transformation. The operations of the group convert
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solutions of the equation into solutions of the equation. This
property may itself be used to define invariance transformations
of equations. Because groups define symmetries, equations have
associated symmetries if they possess more than one solution.
For this reason, almost all differential equations have associated
symmetries.9

Sophus Lie’s extensive development of the concept of
symmetry appropriate to studies of differential equations is one
of the glories of 19th century mathematics.10 Pondering its
implications, Felix Klein realized that Lie’s discoveries provided
a new view of geometry.11 The view is more general than that
of Riemann for it enables one to define geometries that have
no metric. This has a most profound physical consequence:
Lie groups can unambiguously define the symmetry of objects
whose measurements cannot even be agreed upon in principle!

These properties of Lie groups are essential to the discussion
that follows. The discussion begins by clarifing the cor-
respondence between the Lie algebras of groups of transforma-
tions that convert solutions of Schroedinger equations into
solutions and the Lie algebras of groups of canonical transfor-
mations that convert solutions of Hamilton’s equations into
solutions. This Lie algebraic correspondence sets up a cor-
respondence between the dynamical groups of corresponding
quantal and classical systems. This establishes the relationship
between dynamical symmetries of Schroedinger equations and
Lie symmetries of classical total energy surfaces. Interpreting
the Lie symmetries of these surfaces as geometric symmetries
provides a geometric interpretation of dynamical symmetries
of Schroedinger equations.

Because transformations in a phase space need not leave
invariant any imposed measure of distance in the space, the
Lie symmetry of a total energy surface may be larger than its
evident symmetry in any natural set of laboratory coordinates.
The ability of Lie theory to define symmmetriessansmeasure
thus proves of central importance. However, it provides no
unique connection between symmetries in phase space and
metrical symmetries: one has some freedom in choosing this
connection. The choice we adopt makes it possible to assign
Hamiltonian manifolds a symmetry in a metrical sense that they
possess in the more general sense due to Lie.12 This is illustrated
in Figure 1. Figure 1a depicts the Hamiltonian manifold for a
one-dimensional Morse oscillator, defined byH - E ) 0, with
Hamiltonian

In Figure 1a,x, p, andE are considered as Cartesian coordinates
in a Euclidean space. A point with coordinatesp,q,E on the
surface represents a state of the classical oscillator at some
momentt, and this point moves along a trajectory of constant
energy as time evolves. The constant energy contours in the
figure are consequently evolution trajectories. A “transition
state” is the lowest energy state that dissociates. It has a
trajectory leading off to arbitrarly largeq. The projection of a
trajectory in phase space onto aq or p axis defines a solution
of Hamilton’s equations for thatq or p. As time goes on, each
qj becomes a functionfj(t) and eachpj becomes a functiongj(t).

The time-dependent Schroedinger equation of a Morse
oscillator is known to be left invariant by transformations of
the isomorphic local Lie groups Sp(2,R), SU(1,1), and SO(2,1).13

Despite the uncertainty principle, these groups are also local
invariance groups of the total energy surface of a Morse

oscillator and local invariance groups of it’s Hamiltonian
equations of motion in PQET phase space. Smooth invertible
canonical transformations of PQET phase space cannot change
these groups but can yield a different set of coordinates in which
the Hamiltonian manifold is the hyperboloid of revolution
indicated in the quite different Cartesian coordinate system of
Figure 1b. (Trajectories on this manifold will be considered in
section 5.) The SO(2,1) symmetry of this manifold gives rise
to the SO(2,1) invariance of Hamilton’s equations of motion
for the Morse oscillator in PQET space and is responsible for
the corresponding symmetry of Schroedinger’s equation.

It is important to note that the original Hamiltonian manifold
of Figure 1a also possesses SO(2,1) Lie symmetry in phase
space! In the ordinary (Euclidean) sense of the term “sym-
metry”, the symmetry of the manifold has clearly been altered
by the change of canonical coordinates. On the other hand, its
Lie symmetry has remained unchanged. Dynamical symmetries
are always Lie symmetries if they are described by continuous
groups. They may also be ordinary Euclidean-geometric
symmetries.

The difference between Euclidean symmetry and Lie sym-
metry as it applies to objects in phase space is worth examining
in a little more detail. Consider, for example, the spheres
defined in Cartesian coordinates byx2 + y2 + z2 ) r2. They
are left invariant by the rotation operator exp(aRx) exp(bRy) exp-
(cRz) with group parametersa, b, cand generators

The ranges allowed with the parameters are such as to ensure
that any point on each such sphere can be carried into any other

H ) p2/2m - D(exp(-2aX) - 2 exp(-aX)), X ) x - x0

(1)

Figure 1. (a) Total energy surface and evolution trajectories of a Morse
oscillator in PQE space. (b) Morse manifold transformed to display its
SO(2,1) symmetry.

Rx ) (y ∂/∂z - z ∂/∂y), Ry ) (z ∂/∂x - x ∂/∂z), Rz )
(x ∂/∂y - y ∂/∂x) (2)
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point on the sphere. The commutation relations of the genera-
tors are

The commutation relations establish the local Lie group to be
either SU(2) or SO(3)sthe two groups are locally isomorphic.
Now the transformationx f x/a, y f y/b, zf z/c converts the
spheres into ellipsoids. However, it does not alter the com-
mutation relations. Furthermore, allowing the group parameters
to vary over identical ranges ensures that every point on an
ellipsoid or sphere can be carried into any other point, so the
global Lie symmetry group of both is SO(3) rather than SU(2).
(In subsequent sections, all Lie groups will be considered to be
local Lie groups: it would take us too far afield to determine
their global character.)

Suppose now thatx is a position coordinate andy the
momentum coordinate conjugate tox, so that the Poisson bracket
of x,y defined by{x,y} ) ∂x/∂q ∂y/∂p - ∂y/∂p ∂x/∂q has the
value 1. If z were E and r a constant, the space would be a
PQE space. The transformationx f x/a, y f ay would then
be a canonical transformation because the Poisson bracket
{(x/a), (ay)} ) 1. The transformation reduces the Euclidean
symmetry of the sphere but leaves its Lie symmetry unchanged.
As the units in which momentum is measured are quite
independent of those used for position, any investigator would
be free to use a different system of units in which the Euclidean
symmetry of the sphere was restored. A scaling invariance in
mechanics is, therefore, not too surprising.

In this example the scale changes have been the same
throughout the space. However, canonical transformations allow
scale changes which vary (smoothly) from point to point. In
such circumstances, both the passive and active pictures of the
transformation mislead. A “hyperactive” picture which moves
from one Euclidean space to another is less confusing. Thus,
in Figure 1, one must not suppose that the Cartesian coordinate
system in Figure 1a and the Cartesian coordinate system in
Figure 1b belong in the same three-dimensional Euclidean space.
The connection is more akin to that between local Cartesian
coordinates in a plane tangent to the surface of the earth at one
point and local Cartesian coordinates in a plane tangent to the
surface of the earth at some other point, perhaps using different
units. To gain a consistent geometric picture of both two-
dimensional coordinate systems, one may envision a higher
dimensional Euclidean space, in this geographical example a
space of three dimensions, in which both systems coexist.

2. Correspondence between Schroedinger Operators and
Lie Operators in Phase Space

Dirac’s correspondence principle14 associates a unique clas-
sical functionG(q,p) with each Schroedinger operatorG(q,pop).
Because theqj’s and pjop’s do not commute, different Schro-
edinger operators may, however, correspond to the same
classical functionG(q,p). Observing that commutators possess
key algebraic properties possessed by Poisson brackets, Dirac
established the correspondence{qj,pj} ) 1 T [qj,pjop] ) ip for
Cartesian coordinatesq and their conjugate variablesp. He
showed that such non-Cartesianq’s as radial coordinates and
their conjugatep’s obey all the canonical commutation relations
obeyed by their Cartesian analogues, viz

Dirac clearly viewed these results as special cases of a more
general one-way correspondence

and he argued that eq 4a can imply eq 4b if theG’s can be
expressed as power series in their variables. In establishing
that eq 4b is consistent with eq 4a, one does not make any use
of the identityAB ) [A,B] + BAwhich is true for commutators
but not Poisson brackets. The correspondence (eq 4b) also holds
for G’s that are polynomial functions of one member of a pair
of conjugate variables and analytic functions of the other.
Henceforth, we shall use the notationQj(q,pop) to denote
members of a set of operators for which Dirac’s correspondence
principle (eq 4b) is consistent with eq 4a.

In the currently known cases, the generators of dynamical
groups of Schroedinger equations may be expressed as poly-
nomials in the momentum operators and may be denoted
Q(q,pop). SolutionsΨ of Schroedinger equations are converted
into solutions by the operators of this form and by the group
operators exp(iaQ(q,pop)/p). When dealing with time-indepen-
dent Schroedinger equations, the energyE and the timet may
be considered parameters in the functionsQ. When working
with time-dependent Schroedinger equations,t is a dynamical
coordinateq and-E becomes its conjugate momentum operator
-ip ∂/∂t.

Now one may associate with any classical functionG(q,p)
the Lie operator15

Here {G ‚} is a “Poisson bracket waiting to happen”, i.e,
{G ‚}f(q,p) ) {G, f}. For the functionsQ, the chain of
relationshipsQ(q,pop) f Q(q,p) f {Q ‚} sets up a cor-
respondence between Schroedinger operators and operators
acting in classical phase space. Here it will be used to relate
generators of groups that act on Schroedinger equations and
their solutions to generators of groups that act in phase space.
The angular momentum operatorQop ) -ip(q1 ∂/∂q2 - q2 ∂/∂q1)
provides an example. Dirac’s correspondence principle associ-
ates it with the classical functionq1p2 - q2p1. The correspond-
ing classical mechanical operator{Q ‚} is

It is the generator of coordinated rotations of the position and
momentum vectors of an object, rotations in which (q1,q2) f
(q1′,q2′) and (p1,p2) f (p1′,p2′). Another example is provided
by the two-dimensional oscillator Hamiltonian, (p1

2 + q1
2 +

p2
2 + q2

2)/2. For it,

This generates rotations that can carry the position vector (q1,q2)
into the momentum vector (p1,p2), and vice versa.

The correspondenceQ(q,p) f {Q(q,p) ‚} associates a unique
{Q(q,p) ‚} with eachQ(q,p). However, the inverse of this

[Rx,Ry] ) -Rz, [Ry,Rz] ) -Rx, [Rz,Rx] ) -Ry (3)

[qm,pnop] ) ip δmn, [qm,qn] ) 0, [pmop,pnop] ) 0 (4a)

[Ga(q,pop),Gb(q,pop)] ) ip Gc(q,pop) f

{Ga(q,p),Gb(q,p)} ) Gc(q,p) (4b)

{G ‚} ) ∑
i)0

(∂G(q,p)/∂qi ∂/∂pi - ∂ G(q,p)/∂pi ∂/∂pi) (5)

{(q1p2 - q2p1) ‚} ) (q2 ∂/∂q1 - q1 ∂/∂q2) +
(p2 ∂/∂p1 - p1 ∂/∂p2) (6a)

{Q•} ) (q1 ∂/∂p1 - p1 ∂/∂q1) + (q2 ∂/∂p2 - p2 ∂/∂q2) (6b)
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correspondence is not unique because, for any constant,c,
{c ‚} ) 0. Therefore,{(Q(q,p) + c) ‚} ) {Q(q,p) ‚}. As a
consequence, although the chain of correspondencesQ(q,pop)
f Q(q,p) f {Q ‚} associates a unique{Q ‚} with eachQ(q,pop),
neither of the inverse correspondences is unique. It will be seen
below that the ambiguity in going from{Q ‚} to Q(q,p) is solely
responsible for any lack of local isomorphism between the
dynamical groups of Hamilton’s equations with generators
{Q ‚} and the dynamical groups of the corresponding Schro-
edinger equations with generatorsQ(q,pop).

The quantum mechanical group operator exp(iaQ(q,pop)/p)
gives rise to a unique classical mechanical group operator
exp(a{Q(q,p) ‚}). The later is the operator of a one-parameter
Lie group of canonical transformations.15 As such, it carries
points in the phase space PQ, or PQET, into points in this space.
WhenW ) H - E, the quantum mechanical evolution operator
is exp(-itHop/p) and the classical evolution operator is
exp(-t{H ‚}). (The evolution operator of the oscillator of eq
6b is, for example, a rotation operator in phase space.) When
W is f(q)(H - E), H is replaced byW and t by τ, where dt/dτ
) f.16

3. Relation between Quantal and Classical
One-Parameter Local Dynamical Groups

It can be shown that the following relations exist whenever
the actions of the operators are well-defined17:

(i) If exp(iaQ(q,pop)/p) converts solutionsΨ(q,t) of the
Schroedinger equation

into solutions, then exp(a{Q(q,p) ‚}) converts evolution trajec-
tories on the corrersponding Hamiltonian manifold into evolution
trajectories and it leaves the manifold invariant.

(ii) If exp(iaQ(q,pop)/p) converts eigenstates of the corre-
sponding time-independent Schroedinger equation into eigen-
states of the same energyE, then exp(a{Q ‚}) converts solutions
of Hamilton’s equations into solutions with the same energy
and leaves the Hamiltonian manifold invariant.

WhenH(q,p) has singularities, the foregoing statements need
modification. If possible, one defines the Hamiltonian manifold
by an equationW) 0, whereW) f(q)(H - E) and the function
f is so chosen as to makeW and its required derivatives well-
defined. To set up the correspondence above, one must multiply
Schroedinger’s equations by the same functionf. In the case
of a hydrogen atom, multiplying through byr removes the
singularity in the Schroedinger equation

yielding18

4. Relation between Quantal and Classical
Many-Parameter Dynamical Groups

If a set of quantum mechanical operatorsQi(q,pop) comprise
a commutator Lie algebra defined by

then for operators of the formQ, Dirac’s correspondence
principle ensures that there is an isomorphic Poisson bracket
Lie algebra

with dij
k ) ipcij

k. Jacobi’s relation for Poisson brackets can be
used to show that this implies

Here an ambiguity can result for a zero may appear on the right-
hand side of the equation if acij

k vanishes or if a{Qk(q,p) ‚}
vanishes. Henceforth, we will use the symbolΓ to denote
{Q ‚} that do not vanish identically.

If the Lie algebra (eq 11) has no basis in which some element
Q is a constant, then none of the{Q ‚} can vanish. Then every
{Q(q,p) ‚} is aΓ and is an element of a Lie algebra defined by

The Lie algebra of eq 13 is consequently isomorphic to that of
eq 11.

If there is a basis for the quantum mechanical Lie algebra
such that a constant generator exists, call itQ0. Remove it from
the algebra and in eq 12 set thecij

0 to zero. (Thec0j
k andci0

k

already vanish.) The resulting Lie algebra involves onlyΓ’s
and has a dimension of one less than the quantal Lie algebra.
As Q0 ) c, if c is a real number, the group operator, exp(ac),
simply multiplies any function by a factor and the operator exp-
(iac/p) multiplies any function by a phase factor. The corre-
sponding classical operator exp(a{c ‚}) ) exp(0) and multiplies
any operand by unity.

The foregoing connections between the quantal and classical
Lie algebras have the following consequences:

(i) Local invariance groups of Schroedinger’s equations
generated by operatorsQj(q,pop) have as their classical analogues
local invariance groups of Hamilton’s equations of motion that
are also local invariance groups of Hamiltonian manifolds.

(ii) The groups are isomorphic if the quantum mechanical
Lie algebra has no basis in which some generator is a constant
and are simply related if there is such a basis.

Harmonic oscillator systems exemplify these conclusions.
The well-known single-jump Lie algebra of the harmonic
oscillator has three operators that interconvert solutions of
Schroedinger’s time-dependent equation and are generators of
a three-parameter group of invariance transformations of the
equation. For unit mass and unit force constant, the generators
Q may be chosen to be 1 and

The corresponding nonzero{Q ‚} are

The quantal and classical groups are not isomorphic. In contrast,
the quantum mechanical double-jump invariance algebra with
generators(bt)2, (bt

+)2, bt
+bt + btbt

+ is isomorphic to the
corresponding classical invariance algebra.

For Kepler and hydrogen-atom systems at fixedE, the
equations of motion have six time-independent generators which

H(q,pop)Ψ(q,t) ) ip ∂Ψ(q,t)/∂t (7)

(pop
2/2m - 1/r - E)Ψ ) 0 (9a)

r(pop
2/2m - E) - 1)Ψ ) 0 (9b)

[Qi(q,pop),Qj(q,pop)] ) dij
kQk(q,pop) (10)

{Qi(q,p),Qj(q,p)} ) cij
kQk(q,p) (11)

[{Qi(q,p) ‚}, {Qj(q,p)} ‚] ) {cij
kQk(q,p) ‚} (12)

[Γi,Γj] ) cij
kΓk (13)

bt ) exp(it)(pop + iq)/21/2, bt
+ ) exp(-it)(pop - iq)/21/2

(14a)

ât ) exp(it) (i ∂/∂p - ∂/∂q + (q - ip)∂/∂E)/21/2 (14b)

ât
+ ) exp(-it)(-i ∂/∂p - ∂/∂q + (q + ip)∂/∂E)/21/2
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obey isomorphic commutation relations. For bound states, the
quantal and classical degeneracy groups are locally isomorphic
SO(4) groups. Both have operations which interconvert kinetic
and potential energies. The SO(4,2) spectrum-generating group
of the quantum mechanical system19 also has an isomorphic
classical analog.20 Operations of the latter can convert any
bound trajectory, that is one withE < 0, into any other one
with E < 0. They can convert any trajectory withE ) 0 into
any other one withE ) 0 and convert any dissociating state
with E > 0 into any other such state.

The generators of dynamical groups may be determined
systematically by using Lie’s methods for finding the invariance
generators of differential equations.9c,d,8b,c The commutation
relations of the resultingQj(q,pop) or {Qj(q,p) ‚} then determine
local Lie symmetries of the equations of motion, and the{Q ‚}
define local symmetries of energy surfaces under canonical
transformations.

5. Geometric Expression of Dynamical Symmetry

As noted in the Introduction, dynamical symmetries are
usually well hidden and removed from the ken of geometric
intuition because, in commonly used coordinate systems, the
transformation groups that leave energy surfaces invariant stretch
and compress position and momentum coordinates by amounts
that vary from point to point. However, Figure 1 (parts a and
b) illustrate the fact that it may be possible to find smooth
invertible canonical transformations to new sets of coordinates
that do not suffer from this confusing feature. In Figure 1b, a
coordinate system has been chosen so that in it the energy
surface becomes a hyperboloid of revolution defined by

Smooth invertible transformations cannot alter topologies.
Choosing the right-hand side of eq 15 to be negative ensures
that the surface it defines and the original energy surface have
the same topology. The three generators of the SO(2,1) group
that leaves this surface invariant are

Figure 1b possesses rotational symmetry in the usual sense
of the term. In particular, the operations carried out by exp-
(aJ3) move points around the axis of the hyperbola and preserve
the Cartesian distance between points with coordinates (y1, y2,
y3) and (y1′, y2′, y3′). In contrast, this distance, defined by the
cartesian metric

is not left invariant by operations of the subgroups generated
by J1 andJ2.

However, all operations of the group preserve “distance” if
one relaxes ones definition of distancea la Riemann and defines
it by a metric ds′, with

When a Riemannian metric is preserved by a dynamical group,
confusions generated by group transformations which stretch
and compress coordinates are much reduced and it becomes
much easier to forsee the consequences of dynamical symmetry.

When, as in this case, a dynamical group is locally isomorphic
to a metric-preserving group with a known realization on a space
of the same dimension as the PQE space or PQET space of
interest, one may sometimes, without knowing the required
transformation of coordinates, use the isomorphism to express
the symmetry group as a metric-preserving one. The method
is available when operations of the classical dynamical group
acting on a few initially chosen points on an energy surface
sweep out the entire energy surface.21 The operations of the
locally isomorphic metric-preserving group can then sweep out
a manifold which is left invariant by the metric-preserving
expression of the dynamical group. Trajectories on the original
energy surface are mapped into trajectories on this manifold
that is more evidently invariant under the operations of the
dynamical group.

Quantum mechanical analogues of the radial Kepler problem
with zero angular momentum provide a further illustration of
the process just sketched and also reveal some of the advantages
of knowing Wop as a function of group generators. The
Hamiltonian manifold is the two-dimensional surface defined
in three-dimensional PQE space by the classical analogue of
eq 9b on settingL2 ) 0, that is on replacingp2 by pr

2, wherepr

is the radial momentum. Using atomic units the time-
independent equationWopΨ ) 0 has19

where

T3op has eigenvaluesn ) 1,2.., which label states of the discrete
spectrum, while the eigenvalues of T1op are the values of the
nonnegative continuous variablen which labels the states with
a continuous spectrum. These noncommuting operators, to-
gether withT2op ) rprop, are generators of Sp(2,R), SO(2,1),
and SU(1,1) groups whose classical analogues have generators
{Tj(r,p) ‚}. TheTjop have time-dependent versions,T ′jop, which
generate an SO(2,1) invariance of the corresponding time-
dependent Schroedinger equation.8b,c

Neither the classical nor the quantal group operations leave
distances in ordinary space unchanged. However, using the
notation of the previous example, either the substitutions
{T3 ‚} f J3, {T1 ‚} f J1, and{T2 ‚} f J2 or the analogous
substitutions with the time-dependent operators yields an
isomorphic group which leaves a hyperboloid of revolution
invariant. The local isomorphisms of the groups, in fact, define
energy-dependent maps from PQE or PQET space to (y1,y2,y3)
space.22

For eachE, the energy axis must be perpendicular to the plane
of the trajectory, so the angle it makes with the axis of the
hyperbola changes withE. This is illustrated in Figure 2 (parts
b and c) which depict trajectories as intersections of planes of
constant energy with the invariant hyperboloid. ForE less than
zero, the trajectories are closed curves. Bound-state trajectories
of Morse oscillators give rise to analogous trajectories on the
manifold of Figure 1b. (For both the Morse and the Kepler
systems, we have chosen a map that represents ground states
as circles.) Dissociating states of Morse and radial Kepler
systems have open trajectories such as that suggested in Figure
2c.

The radial Kepler hyperboloid of Figure 2 is an invariant
manifold for all quantum mechanical systems whoseWop is a
function of the generatorsT1op, T2op, T3op and variables which

y1
2 + y2

2 - y3
2 ) -|const| (15)

J3 ) (y1 ∂/∂y2 - y2 ∂/∂y1), J2 ) (y3 ∂/∂y1 + y1 ∂/∂y3) (16)

J1 ) (y2 ∂/∂y3 + y3 ∂/∂y)

ds2 ) dy3
2 + dy2

2 + dy1
2 (17)

ds′2 ) dy3
2 - dy2

2 - dy1
2 (18)

Wop ) (1/2 - E)T3op + (1/2 + E)T1op - 1 (19a)

T1op ) r(prop
2-1)/2,T3op ) r(prop

2 + 1)/2;prop )
-i(∂/∂r + 1/r) (19b)
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commute with them. This illustrates two important features of
invariant energy surfaces: They are very stable and they may
be determined by investigating simpler systems than those of
actual interest. They allow one to visualize a host of related
systems as systems that simply evolve different sets of
trajectories on the same invariant and highly symmetrical
surface. In the corresponding Schroedinger equations, the
dependence of energy eigenvalues upon quantum numbers may
differ, as may the degeneracy groups.

Conclusion

Whenever Dirac’s correspondence principle is valid, invari-
ance groups of Schroedinger’s equations that depend on position
and time coordinates correspond to invariance groups of
Hamilton’s equations in the space of positions, momenta, energy,
and time. Though the resulting quantal and classical dynamical
groups need not be isomorphic, both are a consequence of Lie
symmetries of total energy surfaces in classical PQE phase
space. Trajectories defining the state of the classical system
evolve on these surfaces, which bear analogy to the potential-
energy surfaces of molecular quantum mechanics.

The total energy surface of a system generally possesses
symmetries that are not possessed by its potential-energy surface
because the symmetries express relations between positions and
momenta of the particles in the system. These dynamical

symmetries, and their physical and chemical consequences, may
be well hidden because the symmetries are Lie symmetries
defined in a phase spacesa space in which distance is undefined.

Knowledge of dynamical symmetries can be used to establish
maps from Hamiltonian energy surfaces to surfaces whose
symmetries are more evident. Here we have considered the
resulting group-invariant manifolds to be fixed objects whose
relation to the physical world changes as the state of the system
changes. These invariant manifolds are stable to a variety of
alterations of the Hamiltonian itself.
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