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A correspondence between dynamical groups of Schroedinger equations and dynamical groups of Hamilton’s
equations enables one to intrepret both quantal and classical dynamical symmetries as Lie symmetries of
total energy surfaces in a phase space. Suitable choices of Cartesian coordinates in the phase space may
often be used to express these energy surfaces, whose symmetries are seldom obvious, as group-invariant
manifolds with evident geometric symmetries. These invariant manifolds retain their form when a Hamiltonian

is subjected to a wide variety of perturbations and may sometimes be constructed without knowing the
transformation between their Cartesian coordinates and laboratory coordinates.

1. Introduction atoms*—f Quantum chemistry computer programs that exploit

) o ) dynamical symmetries are currently undergoing rapid develop-
This paper develops a geometric interpretation of groups ments

whose transformations convert solutions of Schroedinger equa- 1, particularly useful types of dynamical group may be
tions into solutions and depend on the independent variables indistinguished. Quantum mechanical degeneracy groups are
the equations. The classical an_alogues of t_hese transfo_rmati_ons dynamical groups that convert solutions of Schroedinger’s time-
can l:_)e shown to convert solutions of Hamilton’s equations into independent equation into solutions of the same energy. Energy
solutions. We shall refer to groups of such transformations as eigenstates may be labeled by their transformation properties
dynamical groups. The transformations of a dynamical group ynder the action of these groups, and it is the symmetries defined
of Hamilton’s equations are also invariance transformations of .y these dynamical groups that are relevant to the noncrossing
total energy surfaces. Solutions of the equations of motion are je6  gjightly breaking these symmetries can yield nearly
represented by trajectories on these surfaces, and operations Qfegenerate states and lead to avoided crossings. The symmetries
a dynamical group interconvert these trajectories. The energyneed not be symmetries in position space: many chemicaly
surfaces, or Hamiltonian manifolds, are commonly defined by sjgnificant examples are provided by the breaking of Hartree
the expressiotii(q,p) — E = 0, but it is the geometric object  Fock degeneracies and the breaking of degeneracies that occur
and its symmetries, rather than its analytical expression, which jn najve LCAO MO and other one-electron appproximatiens

will be of central interest. Here and throughout the discussion, gegeneracies that are not due to ordinary molecular symmetry.
q = (du, G ) denotes position variables apé= (py, pe, --.) Quantum mechanical spectrum-generating groups have gen-
denotes their conjugate momentum variablEsdenotes the  gat0rs that convert eigenstates of one energy into eigenstates
energy, and will be used to denote time. As dynamical groups ot another energy. Their time-dependent versions generate
carry solution trajectories into solution trajectories, they are at dynamical groups that convert solutions of Schroedinger’s time-
least subgroups of the invariance group of energy surfaces. ependent equation into solutichs.

Most of the operations of dynamical groups are operations |t turns out that degeneracy groups are associated with Lie
of Lie groups. As explained below, the major symmetries of symmetries in classical PQ space, the phase space of positions,
total energy surfacestheir Lie symmetries-are often much  and momenta. They need not be Lie symmetries in momentum
larger than one might expect. This property is inherited by the space or position space separately: the group operations may
dynamical groups of Schroedinger equations, which commonly interconvert positions and momenta. Degeneracy groups may
express symmetries of Hamiltonian manifolds that are far from pe different for different ranges oE values. Spectrum-
obvious. generating groups and other invariance groups of time-dependent

The recent monograph by lachello and Le¥iaad the many Schroedinger equations are associated with Lie symmetries in
references it contains amply demonstrate the utility of dynamical classical PQET phase space. (Becduseanonically conjugate
groups and their Lie algebras in the analysis and prediction of to —E, it can become necessary to enlarge PQE space to include
rovibrational spectra; a host of recently uncovered relationships t if one wishes to transforr.)
and simplifications are brought to the fore. The recognition = Symmetries as commonly understood in chemistry, solid-state
that electronic motion in hydrogen-like atoms possesses thephysics, and the sciences in general are special cases of Lie
dynamical symmetry of a hypersphere dates back to the 1935symmetries. Lie’s more general concept arose from a consid-
work of Fock and Bargmanh. Dynamical symmetries of  eration of invariance transformations of equations. If an
electronic motions are apparently responsible for the generalequation is left unchanged by a transformation of its variables
form of the periodic cha®® They are responsible for surprising and by the inverse of this transformation, then it possesses an
relationships in the energy spectra of one-electron diatdfics invariance group defined by these transformations and the
and in the spectra of the doubly excited states of helum-like identity transformation. The operations of the group convert

10.1021/jp982084s CCC: $15.00 © 1998 American Chemical Society
Published on Web 08/28/1998



Dynamical Symmetries of Schroedinger Equations J. Phys. Chem. A, Vol. 102, No. 47, 199843

solutions of the equation into solutions of the equation. This
property may itself be used to define invariance transformations
of equations. Because groups define symmetries, equations have
associated symmetries if they possess more than one solution.
For this reason, almost all differential equations have associated ¢}
symmetries.

Sophus Lie’s extensive development of the concept of
symmetry appropriate to studies of differential equations is one ~of
of the glories of 19th century mathemati®s.Pondering its
implications, Felix Klein realized that Lie’s discoveries provided
a new view of geometr{t The view is more general than that
of Riemann for it enables one to define geometries that have
no metric. This has a most profound physical consequence:
Lie groups can unambiguously define the symmetry of objects
whose measurements cannot even be agreed upon in principle!

These properties of Lie groups are essential to the discussion
that follows. The discussion begins by clarifing the cor-
respondence between the Lie algebras of groups of transforma-
tions that convert solutions of Schroedinger equations into
solutions and the Lie algebras of groups of canonical transfor-
mations that convert solutions of Hamilton’s equations into o
solutions. This Lie algebraic correspondence sets up a cor-y§~
respondence between the dynamical groups of corresponding *
quantal and classical systems. This establishes the relationship *
between dynamical symmetries of Schroedinger equations and
Lie symmetries of classical total energy surfaces. Interpreting
the Lie symmetries of these surfaces as geometric symmetries _
provides a geometric interpretation of dynamical symmetries e
of Schroedinger equations. Figure 1. (a) Total energy surface and evolution trajectories of a Morse

Because transformations in a phase space need not leavescillator in PQE space. (b) Morse manifold transformed to display its
invariant any imposed measure of distance in the space, theSO(2,1) symmetry.

Lie symmetry of a total energy surface may be larger than its ) ) ] ) o
evident symmetry in any natural set of laboratory coordinates. Scillator and local invariance groups of it's Hamiltonian
The ability of Lie theory to define symmmetrisansmeasure ~ €duations of motion in PQET phase space. Smooth invertible
thus proves of central importance. However, it provides no canonical transformations of PQET phase space cannot change
unique connection between symmetries in phase space andhese groups put can yleld a.dlfferent set of co.ordlnates in v_vhlch
metrical symmetries: one has some freedom in choosing thisthe Hamiltonian manifold is the hyperboloid of revolution
connection. The choice we adopt makes it possible to assign'”_d'cated in the_qune_dlfferent_ Carte_s|an cqordlnate system of
Hamiltonian manifolds a symmetry in a metrical sense that they Flgu're 1b. (Trajectories on this manlfold_wul be_ cons@ered_ in
possess in the more general sense due t&Lihis is illustrated ~ S€ction 5.) The SO(2,1) symmetry of this manifold gives rise
in Figure 1. Figure 1a depicts the Hamiltonian manifold for a t0 the SO(2,1) invariance of Hamilton’s equations of motion

one-dimensional Morse oscillator, defined Hy- E = 0, with for the Morse oscillator in PQET space and is responsible for
Hamiltonian the corresponding symmetry of Schroedinger’s equation.

It is important to note that the original Hamiltonian manifold
2 . of Figure la also possesses SO(2,1) Lie symmetry in phase
H = p/2m — D(exp(-2aX) — 2 exp(-aX), X =X — X space! In the ordinary (Euclidean) sense of the term “sym-
(1) metry”, the symmetry of the manifold has clearly been altered
by the change of canonical coordinates. On the other hand, its
In Figure 1ax, p, andE are considered as Cartesian coordinates Li€ symmetry has remained unchanged. Dynamical symmetries
in a Euclidean space. A point with coordinates,E on the are always Lie symmetries if they are descrlb(_ed by continuous
surface represents a state of the classical oscillator at somedfoups. They may also be ordinary Euclidean-geometric
momentt, and this point moves along a trajectory of constant SYmmetries. . .
energy as time evolves. The constant energy contours in the The difference between Euclidean symmetry and Lie sym-
figure are consequently evolution trajectories. A “transition Metry as it applies to objects in phase space is worth examining
state” is the lowest energy state that dissociates. It has ain @ little more detail. Consider, for example, the spheres
trajectory leading off to arbitrarly large The projection of a  defined in Cartesian coordinates &Y+ y* + 22 = r2. They
trajectory in phase space ontaar p axis defines a solution ~ @re leftinvariant by the rotation operator eaf) expbR)) exp-
of Hamilton’s equations for thaj or p. As time goes on, each  (CRo) with group parametera, b, cand generators
g; becomes a functiofy(t) and eachp, becomes a functiogj(t).
The time-dependent Schroedinger equation of a Morse Fx= (Y 392 — 2 d/dy), R, = (zd/dx — x 9/92), R, =
oscillator is known to be left invariant by transformations of (x9ldy — y dlox) (2)
the isomorphic local Lie groups Sp(2,R), SU(1,1), and SO{2,1).
Despite the uncertainty principle, these groups are also local The ranges allowed with the parameters are such as to ensure
invariance groups of the total energy surface of a Morse that any point on each such sphere can be carried into any other
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point on the sphere. The commutation relations of the genera- Dirac clearly viewed these results as special cases of a more
tors are general one-way correspondence

[RRI=-R,[R.R]=-R,[R.RI=—-R, (3) [Go(0Pop) Co(@Pop)] = ih G(a,Pgp) —
G,(9,p),Gy(a.p)} = G.(g,p) (4b
The commutation relations establish the local Lie group to be (G Gulap) {aPp) (4b)
either SU(2) or SO(3)the two groups are locally isomorphic.
Now the transformatiom — x/a, y — y/b, z— z/c converts the
spheres into ellipsoids. However, it does not alter the com-

mutation relations. Furthermore, allowing the group parameters X ) > N
to vary over identical ranges ensures that every point on an ©f the identityAB=[A,B] + BAwhich is true for commutators

ellipsoid or sphere can be carried into any other point, so the but not Poisson brackets.. The cqrrespondence (eq 4b) also hplds
global Lie symmetry group of both is SO(3) rather than SU(2). for G's that are polynomial functions of one member of a pair

(In subsequent sections, all Lie groups will be considered to be ©f conjugate variables and analytic functions of the other.

local Lie groups: it would take us too far afield to determine Henceforth, we shall use the notatia@(d,pop) to denote
their global character.) members of a set of operators for which Dirac’s correspondence

Suppose now thak is a position coordinate ang the principle (eq 4b) is consistent with eq 4a. )
momentum coordinate conjugatextcso that the Poisson bracket !N the currently known cases, the generators of dynamical
of xy defined by{x,y} = ax/dq ay/dp — dyldp ax/dq has the groups of Schroedinger equations may be expressed as poly-
value 1. IfzwereE andr a constant, the space would be a Nomials in the momentum operators and may be denoted
PQE space. The transformatian— x/a, y — ay would then _Q(q:pop)- _Solutlons‘If of Schroedlnger_ equations are converted
be a canonical transformation because the Poisson bracketnto solutions by the operators of this form and by the group
{(¥/a), (ay)} = 1. The transformation reduces the Euclidean OP€rators expQ(q,pop)/ft). When dealing with time-indepen-
symmetry of the sphere but leaves its Lie symmetry unchanged.dent Schroedinger equations, the enefggnd the timet may
As the units in which momentum is measured are quite P€ considered parameters in the functiéhs When working
independent of those used for position, any investigator would With time-dependent Schroedinger equatidnis,a dynamical
be free to use a different system of units in which the Euclidean c00rdinatej and—E becomes its conjugate momentum operator
symmetry of the sphere was restored. A scaling invariance in —ih olot.
mechanics is, therefore, not too surprising. Now one may associate with any classical functi®(a,p)

In this example the scale changes have been the samehe Lie operatd®
throughout the space. However, canonical transformations allow
scale changes which vary (smoothly) from point to point. In {G}= Z (3G(a,p)/og;, a/ap, — 8 G(q.,p)/ap; dlap) (5)
such circumstances, both the passive and active pictures of the =
transformation mislead. A “hyperactive” picture which moves
from one Euclidean space to another is less confusing. Thus,Here {G -} is a “Poisson bracket waiting to happen”, i.e,
in Figure 1, one must not suppose that the Cartesian coordinate{G -}f(qp) = {G, f}. For the functionsQ, the chain of
system in Figure la and the Cartesian coordinate system inrelationshipsQ(q,pop) — Q(g,p) — {Q *} sets up a cor-
Figure 1b belong in the same three-dimensional Euclidean spacerespondence between Schroedinger operators and operators
The connection is more akin to that between local Cartesian acting in classical phase space. Here it will be used to relate
coordinates in a plane tangent to the surface of the earth at On%enerators of groups that act on Schroedinger equations and
point and local Cartesian coordinates in a plane tangent to thetheir solutions to generators of groups that act in phase space.
surface of the earth at some other point, perhaps using differentThe angular momentum operat@s, = —ih(q /902 — 0 3/3qy)
units. To gain a consistent geometric picture of both two- provides an example. Dirac’s correspondence principle associ-

dimensional coordinate systems, one may envision a higherates it with the classical functianp, — gzp1. The correspond-
dimensional Euclidean space, in this geographical example ajng classical mechanical operatfo® -} is
space of three dimensions, in which both systems coexist.

and he argued that eq 4a can imply eq 4b if @Gie can be
expressed as power series in their variables. In establishing
that eq 4b is consistent with eq 4a, one does not make any use

{(ap, — qupy) *} = (0, 0/0q, — q, 9/9q,) +

2. Correspondence between Schroedinger Operators and
b g P (P, 8/9p, — py 9/9p,) (6a)

Lie Operators in Phase Space

_Dirac's correspondence principfeassociates a unique clas- |t is the generator of coordinated rotations of the position and
sical functionG(q,p) with each Schroedinger operatd(q,pop)- momentum vectors of an object, rotations in which,dz) —
Because the]J'S and pjop’S do not commute, different Schro- (C{1',Q2') and @l’pz) — (pl"pz')_ Another examp|e is provided

edinger operators may, however, correspond to the samepy the two-dimensional oscillator Hamiltoniam,f + ;2 +
classical functiorG(q,p). Observing that commutators possess p,2 + q,?)/2. For it,

key algebraic properties possessed by Poisson brackets, Dirac

established the correspondedecgp} = 1 < [q;,pjop] = ik for o

Cartesian coordinateg and their conjugate variablgs He {Q} = (0, 9/dp, — p, 9/9qy) + (0, 0/0p, — P, 0/d0,)  (6Db)
showed that such non-Cartesigis as radial coordinates and

their conjugatey’s obey all the canonical commutation relations  This generates rotations that can carry the position vegt@p)
obeyed by their Cartesian analogues, viz into the momentum vectop(,p,), and vice versa.

) The correspondend@(q,p) — {Q(q,p) -} associates a unique
[GmPropl = i Oy [Arm Gl = O, [PrgpPropl =0 (4a) {Q(q,p) *} with eachQ(q,p). However, the inverse of this
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correspondence is not unique because, for any constant, then for operators of the forn@, Dirac’'s correspondence
{c -} = 0. Therefore{(Q(q,p) + ¢) -} = {Q(g,p) -}. As a principle ensures that there is an isomorphic Poisson bracket
consequence, although the chain of corresponde@(@op) Lie algebra

— Q(g,p) — {Q } associates a uniqy® -} with eachQ(q,pop),

neither of the inverse correspondences is unique. It will be seen {Qi(q,p),Qj(q,p)} = ciijk(q,p) (11)
below that the ambiguity in going frofQ -} to Q(q,p) is solely

responsible for any lack of local isomorphism between the With di* = ificj*. Jacobi's relation for Poisson brackets can be
dynamical groups of Hamilton’s equations with generators used to show that this implies

{Q -} and the dynamical groups of the corresponding Schro- ‘

edinger equations with generata@q,pop)- {Q(ap }.{Q@ap} 1={c;Qap -} (12

The guantum mechanical group operator @4(d,Pop)/h) Here an ambiguity can result for a zero may appear on the right-

ives rise to a unique classical mechanical group operator . o i X
gxp(a{Q(q,p) D Th?—: later is the operator of a c?ne-pparapr)neter han_d side of the equation if ‘a.k vanishes or if § Q(a,p) -}
Lie group of canonical transformatiohs. As such, it carries vanishes. Henceforth, we W'.” use the symiiolto denote
points in the phase space PQ, or PQET, into points in this space.{Q '} tha_t do not vanish identically. . .
WhenW = H — E, the quantum mechanical evolution operator .If the Lie algebra (eq 11) has no basis in Wh'Ch some element
Qs a constant, then none of th® -} can vanish. Then every

is expEitHoyh) and the classical evolution operator is N . . .
exp(—t{H -}). (The evolution operator of the oscillator of eq {Q(ap) } is al’ and is an element of a Lie algebra defined by
6b is, for example, a rotation operator in phase space.) When [[.[] = ckr (13)
Wis f(q)(H — E), H is replaced by andt by 7, where d/dr rl [
= f.16

The Lie algebra of eq 13 is consequently isomorphic to that of

eq 11.
3. Relation between Quantal and Classical If there is a basis for the quantum mechanical Lie algebra
One-Parameter Local Dynamical Groups such that a constant generator exists, c&bit Remove it from

. . , the algebra and in eq 12 set th¢ to zero. (ThecgX andci*
It can be shown that the following relations exist whenever already vanish.) The resulting Lie algebra involves oRly

the. actions O_f the operators are well-def.ii‘fed and has a dimension of one less than the quantal Lie algebra.
(i) If exp(iaQ(a,pop)/fi) converts solutionsW(q,t) of the As Qo = ¢, if cis a real number, the group operator, @g)(

Schroedinger equation simply multiplies any function by a factor and the operator exp-
(iac/h) multiplies any function by a phase factor. The corre-
H(@popW(at) = ih 0W(q,t)/ot () sponding classical operator egp¢€ -}) = exp(0) and multiplies
any operand by unity.
into solutions, then exp{ Q(q,p) *}) converts evolution trajec- The foregoing connections between the quantal and classical
tories on the corrersponding Hamiltonian manifold into evolution Lie algebras have the following consequences:
trajectories and it leaves the manifold invariant. (i) Local invariance groups of Schroedinger's equations

generated by operato@(q,pop) have as their classical analogues
local invariance groups of Hamilton’s equations of motion that
are also local invariance groups of Hamiltonian manifolds.

(ii) The groups are isomorphic if the quantum mechanical
Lie algebra has no basis in which some generator is a constant
and are simply related if there is such a basis.

Harmonic oscillator systems exemplify these conclusions.
The well-known single-jump Lie algebra of the harmonic
oscillator has three operators that interconvert solutions of
Schroedinger’s time-dependent equation and are generators of
Ya three-parameter group of invariance transformations of the

equation. For unit mass and unit force constant, the generators
Q may be chosen to be 1 and

b = exp(t) (o, + 1)/2"% by = exp(=it)(p,, — ig)/2"
(14a)

(i) If exp(iaQ(q,pop)/fi) converts eigenstates of the corre-
sponding time-independent Schroedinger equation into eigen-
states of the same enerBythen exp§{ Q -}) converts solutions
of Hamilton’s equations into solutions with the same energy
and leaves the Hamiltonian manifold invariant.

WhenH(q,p) has singularities, the foregoing statements need
modification. If possible, one defines the Hamiltonian manifold
by an equatioW = 0, whereW = f(g)(H — E) and the function
fis so chosen as to mak& and its required derivatives well-
defined. To set up the correspondence above, one must multipl
Schroedinger’s equations by the same funcfiorin the case
of a hydrogen atom, multiplying through hy removes the
singularity in the Schroedinger equation

(Do 12M — I — E)W =0 (9a)

yielding'? The corresponding nonzef®) -} are
[(Po2/2m — E) — L)W =0 (9b) B, = exp(t) (i /9p — d/oq + (q — ip)aldE)/2"*  (14b)

+_ . . : 1/2
4. Relation between Quantal and Classical 2 expit)(—i 3/op — 9/ + ( + ip)/IE)/2
Many-Parameter Dynamical Groups The quantal and classical groups are not isomorphic. In contrast,
the quantum mechanical double-jump invariance algebra with
generators(by)?, (b")2, bty + bt is isomorphic to the
corresponding classical invariance algebra.

K For Kepler and hydrogen-atom systems at fixed the
[Qi(APop), Qi(A:Pep)] = i Qu(a,Pop) (10) equations of motion have six time-independent generators which

If a set of quantum mechanical operatQi$g,pop) COMprise
a commutator Lie algebra defined by
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obey isomorphic commutation relations. For bound states, the When, as in this case, a dynamical group is locally isomorphic
guantal and classical degeneracy groups are locally isomorphicto a metric-preserving group with a known realization on a space
SO(4) groups. Both have operations which interconvert kinetic of the same dimension as the PQE space or PQET space of
and potential energies. The SO(4,2) spectrum-generating grouginterest, one may sometimes, without knowing the required
of the quantum mechanical syst€halso has an isomorphic  transformation of coordinates, use the isomorphism to express
classical analog® Operations of the latter can convert any the symmetry group as a metric-preserving one. The method
bound trajectory, that is one with < 0, into any other one is available when operations of the classical dynamical group

with E < 0. They can convert any trajectory with= 0 into acting on a few initially chosen points on an energy surface
any other one wittE = 0 and convert any dissociating state sweep out the entire energy surf&&eThe operations of the
with E > 0 into any other such state. locally isomorphic metric-preserving group can then sweep out

The generators of dynamical groups may be determined a manifold which is left invariant by the metric-preserving
systematically by using Lie’s methods for finding the invariance expression of the dynamical group. Trajectories on the original
generators of differential equatioPfed85¢ The commutation energy surface are mapped into trajectories on this manifold
relations of the resultin@®;(q,pop) or { Qj(q,p) -} then determine  that is more evidently invariant under the operations of the

local Lie symmetries of the equations of motion, and{t@e-} dynamical group.

define local symmetries of energy surfaces under canonical Quantum mechanical analogues of the radial Kepler problem

transformations. with zero angular momentum provide a further illustration of
the process just sketched and also reveal some of the advantages

5. Geometric Expression of Dynamical Symmetry of knowing Wy, as a function of group generators. The

As noted in the Introduction, dynamical symmetries are Hamiltonian manifold is the two-dimensional surface defined

usually well hidden and removed from the ken of geometric " three-dlmgn5|(2:)nal PQE space by the glassmzal analogue of
intuition because, in commonly used coordinate systems, thed 9P on setting =0, that is on replacing” by pi*, wherepr
transformation groups that leave energy surfaces invariant stretcHfS the radial momentum. Usmgg atomic units the time-
and compress position and momentum coordinates by amountddependent equationo,¥ = 0 has

that vary from point to point. However, Figure 1 (parts a and
b) illustrate the fact that it may be possible to find smooth
invertible canonical transformations to new sets of coordinates
that do not suffer from this confusing feature. In Figure 1b, a
coordinate system has been chosen so that in it the energyr
surface becomes a hyperboloid of revolution defined by

W,, = (1, = B)Taop+ (1, + )T 1 (19a)

op lop

where

lop r(propz_ 1)/21 T30p = I’(propz + 1)/2; prop =
—i(alar + 1/r) (19b)

2 2,2
Yi Ty, —Yg = —lconst (15) Taophas eigenvalues= 1,2.., which label states of the discrete

spectrum, while the eigenvalues ofyf are the values of the

Smooth invertible transformations cannot alter topologies. nonnegative continuous variabtehich labels the states with

Choosing the right-hand side of eq 15 to be negative ensures, ontinuous spectrum. These noncommuting operators, to-
that the surface it defines and the original energy surface ha"egether WithT20p = Prop, are generators of Spf), SO(2,1)
the same topology. The three generators of the SO(2,1) groupanq SU(1,1) groups whose classical analogues have generators
that leaves this surface invariant are {Ti(r,p) }. TheTo, have time-dependent versiofs;qp, Which
- - generate an SO(2,1) invariance of the corresponding time-
3= (y, /0y, = ¥, 8/9y1), o = (Y5 8/3y; + Yy 9/dys) (16) dependent Schroedinger equatff.
. Neither the classical nor the quantal group operations leave
Iy = (y2 8/9y5 + 5 9/y) distances in ordinary space unchanged. However, using the
) . . notation of the previous example, either the substitutions
Figure 1b possesses rotational symmetry in the usual sense{-l—3 } — J3 {T1 -} — J, and{T> -} — J, or the analogous
of the term. In particular, the operations carried out by exp- g pstitutions with the time-dependent operators yields an
(aJ;) move points around the axis of the hyperbola and preservegomorphic group which leaves a hyperboloid of revolution
the Cartesian distance between points with coordingteyA invariant. The local isomorphisms of the groups, in fact, define

y3) anql (7 yz',_yg'). In contrast, this distance, defined by the energy-dependent maps from PQE or PQET space: jy.{/s)
cartesian metric space?
5 5 ) For eaclE, the energy axis must be perpendicular to the plane
ds” = dy,” + dy,” + dy; 17) of the trajectory, so the angle it makes with the axis of the
hyperbola changes wit. This is illustrated in Figure 2 (parts
is not left invariant by operations of the subgroups generated b and c) which depict trajectories as intersections of planes of
by J; and J,. constant energy with the invariant hyperboloid. Edess than

However, all operations of the group preserve “distance” if zero, the trajectories are closed curves. Bound-state trajectories
one relaxes ones definition of distarecéa Riemann and defines  of Morse oscillators give rise to analogous trajectories on the

it by a metric &, with manifold of Figure 1b. (For both the Morse and the Kepler
5 5 ) 5 systems, we have chosen a map that represents ground states
ds©=dy;" — dy,” — dy, (18) as circles.) Dissociating states of Morse and radial Kepler

systems have open trajectories such as that suggested in Figure
When a Riemannian metric is preserved by a dynamical group, 2c.
confusions generated by group transformations which stretch The radial Kepler hyperboloid of Figure 2 is an invariant
and compress coordinates are much reduced and it becomesnanifold for all quantum mechanical systems wh¥lgg is a
much easier to forsee the consequences of dynamical symmetryfunction of the generator$;op, Toop T30p and variables which
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Figure 2. (a) Intersection of invariant manifold of radial Kepler system
with surface of constar, ground state. (b) Intersection of invariant
manifold of radial Kepler system with surface of const&ntbound
excited state. (c) Intersection of SO(2,1) invariant manifold with
constant energy surface of a dissociating state.

commute with them. This illustrates two important features of
invariant energy surfaces: They are very stable and they may
be determined by investigating simpler systems than those of
actual interest. They allow one to visualize a host of related
systems as systems that simply evolve different sets of
trajectories on the same invariant and highly symmetrical
surface. In the corresponding Schroedinger equations, the
dependence of energy eigenvalues upon quantum numbers ma’
differ, as may the degeneracy groups.

Conclusion

Whenever Dirac’s correspondence principle is valid, invari-
ance groups of Schroedinger’s equations that depend on positio
and time coordinates correspond to invariance groups of
Hamilton’s equations in the space of positions, momenta, energy,
and time. Though the resulting quantal and classical dynamical

groups need not be isomorphic, both are a consequence of Lie;

symmetries of total energy surfaces in classical PQE phase
space. Trajectories defining the state of the classical system
evolve on these surfaces, which bear analogy to the potential-
energy surfaces of molecular quantum mechanics.

J. Phys. Chem. A, Vol. 102, No. 47, 1998547

symmetries, and their physical and chemical consequences, may
be well hidden because the symmetries are Lie symmetries
defined in a phase spaca space in which distance is undefined.

Knowledge of dynamical symmetries can be used to establish
maps from Hamiltonian energy surfaces to surfaces whose
symmetries are more evident. Here we have considered the
resulting group-invariant manifolds to be fixed objects whose
relation to the physical world changes as the state of the system
changes. These invariant manifolds are stable to a variety of
alterations of the Hamiltonian itself.
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